Model Checking of Probabilistic and
Nondeterministic Systems*

Andrea Bianco! and Luca de Alfaro?

! Politecnico di Torino, Italy. bianco@polito. it
2 Stanford University, USA. luca@cs.stanford.edu

Abstract. The temporal logics pCTL and pCTL* have been proposed
as tools for the formal specification and verification of probabilistic sys-
tems: as they can express quantitative bounds on the probability of sys-
tem evolutions, they can be used to specify system properties such as
reliability and performance. In this paper, we present model-checking
algorithms for extensions of pCTL and pCTL* to systems in which
the probabilistic behavior coexists with nondeterminism, and show that
these algorithms have polynomial-time complexity in the size of the sys-
tem. This provides a practical tool for reasoning on the reliability and
performance of parallel systems.

1 Introduction

Temporal logic has been successfully used to specify the behavior of concur-
rent and reactive systems. These systems are usually modeled as nondetermin-
istic processes: at any moment in time, more than one future evolution may be
possible, but a probabilistic characterization of their likelihood is normally not
attempted. While many important system properties can be studied in this set-
ting, others, such as reliability and performance, require instead a probabilistic
characterization of the system.

The first applications of temporal logic to probabilistic systems consisted
in studying which temporal logic properties are satisfied with probability 1 by
systems modeled either as finite Markov chains [14, 18, 12, 1, 20] or as augmented
Markov models exhibiting both nondeterministic and probabilistic behavior [22,
19, 5, 20].

Subsequently, [10, 2] considered systems modeled by discrete Markov chains,
and introduced the logics pCTL and pCTL*, that can express quantitative
bounds on the probability of system evolutions. These logics can thus be used
to reason on the reliability and performance of systems. They are obtained by
adding to the branching time logics CTL and CTL* a probabilistic operator P,

* This research was supported in part by the National Science Foundation under
grant CCR-92-23226, by the Advanced Research Projects Agency under NASA grant
NAG2-892, by the United States Air Force Office of Scientific Research under grant
F49620-93-1-0139, by Department of the Army under grant DAAH04-95-1-0317, and
by the Italian National Research Council.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1995 2. REPORT TYPE 00-00-1995 to 00-00-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Model Checking of Probabilistic and Nondeter ministic Systems £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Stanford Univer sity,Department of Computer Science,Stanford,CA,94305 | REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 15
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

such that the formula IP»,¢ is true at a given point of the system evolution if,
starting from that point, the probability that a future evolution satisfies ¢ 1s at
least a.

The model-checking algorithms presented in [10, 2] can be used to determine
the validity of pCTL and pCTL* formulas on systems modeled by finite Markov
chains. Moreover, [2] considers generalized Markov processes, representing fami-
lies of Markov chains, and shows that the decision problem for pCTL* formulas
on generalized Markov processes is decidable using results from the theory of
real closed fields. However, no efficient computational method is given for this
latter problem.

In this paper, we extend the logics pCTL and pCTL* to systems in which
nondeterministic and probabilistic behavior coexist. We model these systems by
probabilistic-nondeterministic systems, similar to the augmented Markov models
of [19, 20]. Due to the presence of nondeterminism it is not possible, in general,
to talk about the probability with which a formula is satisfied, but only about
the lower and upper bounds of such probability. Therefore, according to our def-
inition, the formula IP»,¢ (resp. IP<,¢) is true at a given point of the system
evolution if a system evolution starting from that point satisfies ¢ with a proba-
bility bounded from below (resp. above) by a. We then present model-checking
algorithms that verify whether a system satisfies a specification written in pCTL
or pCTL* in polynomial time in the size of the description of the system.

The logics pCTL and pCTL*, together with these model-checking algorithms,
provide a practical tool for the formal specification and verification of the perfor-
mance and reliability of parallel systems. Nondeterminism, as already recognized
by [22, 19, 5, 20], is in fact the key to the natural modeling of parallel probabilis-
tic systems by interleaving, as it allows us to model the choice of which system
in the parallel composition takes a transition. Nondeterminism also gives the
flexibility of leaving some transition probabilities unspecified. This leads to sim-
pler system models, and it is necessary when some transition probabilities are
unknown. Leaving some transition probabilities unspecified can also be useful
when 1t is not desirable that a correctness proof of the system with respect to
some specification depends on the value of those probabilities.

2 Probabilistic-Nondeterministic Systems

Following an approach similar to [19, 20], we use Probabilistic-Nondeterministic
Systems (PNS) to model systems in which probabilistic and nondeterministic
components of the behavior coexist. To give a formal definition of PNS, we first
introduce next-state probability distributions.

Definition1 (next-state probability distribution). If S is the state space
of a system, a next-state probability distribution is a function p : S — [0, 1] such
that 3~ g p(s) = 1. For s € S, p(s) represents the probability of making a direct
transition to s from the current state. a

A PNS can then be defined as follows.

Definition2 (PNS). A PNS is a quadruple IT = (S, sin, V, 7), where:

—_

. S 1s the denumerable or finite state space of the system;

. Sin € S 1s the 1nitial state;

3. V is a labeling function that associates with each s € S the set V(s) C P of
propositional variables that are true in s;

4. 7 is a function that associates with each s € S the set 7(s) = {pi,...,p; }

of next-state probability distributions from s. We denote |7(s)| by k. O

[N

The successor of a state s € S 1s chosen according to a two-phase process:
first, a next-state probability distribution pj € 7(s) is selected nondeterministi-
cally among pi, ..., p;_; second, a successor state ¢ € S is chosen according to
the probability distribution pf on S.

This model, based on the one proposed in [19], generalizes the approach
of [22] by allowing a simpler encoding of the parallel composition of systems.
To see how parallelism can be modeled by a PNS| consider as an example the
parallel composition of m Markov chains Ay, ..., A;. In a PNS I representing
A || Az || ... || Am, we can associate with each state s € S the next-state
distributions 7(s) = {p35,...,p,}, where the distribution pj arises from a move
taken by the chain A;, 1 < ¢ < m. In this way, the probabilistic information on
the behavior of each chain is preserved in I, and the choice of the Markov chain
that takes a transition is nondeterministic.

We define a reachability relation p C S x S by

p=1{(s,t)|3p* €7(s).p°(t) > 0}.
Then, we associate with each state s € S the set
2, = {sos182... | s=s0 AVn € N . p(sn, Snt1)}

of legal infinite sequences of states beginning at s. The set of computations of a
system IT is thus {2, . For w € §2,, we denote with w|, the n-th state of w, with
wlg = s.

Moreover, we let By C 29 be the smallest algebra of subsets of {2, that
contains all the basic cylinder sets {w € £2; |w|o = so A ... Awl|p, = sp} for all
n>0,sg,...,8, €S, and that is closed under complement and countable unions
and intersections. This algebra is called the Borel o-algebra of basic cylinder sets,
and its elements are the measurable sets of sequences, to which it will be possible
to assign a probability [13].

Sin

Minimal and Maximal Probabilities

Due to the presence of nondeterminism, we cannot define a probability measure
on the Borel o-algebra Bs. However, for each set of sequences A € B;, we can
define its mazimal probability p¥(A) and its minimal probability py (A). Intu-
itively, uF (A) (resp. p; (A)) represents the probability that the system follows
a sequence in A provided that the nondeterministic choices are as favorable

(resp. unfavorable) as possible. To formalize the idea of favorable and unfavor-
able choices, we introduce the concept of strategies (similar to the schedules of
[22, 19, 5, 20]), that determine which next-state probability distribution is chosen
for each state.

If the system reaches the root s of 2, following the sequence si,s1...s,s,
we can assume that a strategy does not depend on the “past” sequence w, =
SinS1 - - . Sn. In fact, we are interested in a strategy that maximizes or minimizes
the probability that the system, starting from s, follows a sequence in A: as
neither A nor the next-state distributions depend on w,, such strategy also need
not depend on w,. Formally, a strategy is defined as follows.

Definition3 (strategy). A strategyn is a set of conditional probabilities Q, (7 |

$081 . ..8p) such that Zf;fi Qn(i|sgs1...sp) =1, foralln € N, sg,s1,...,8, €
S,and 1 <7< ks, . a

When a system behaves according to a strategy n in the evolution from
sg € S, and has reached s, following the sequence sg...s,, it will choose the
next-state distribution p;™ with probability @, (i | sos1 ...sn). The probability
Pr,(t | so...sn) that a direct transition to ¢ is taken next is thus equal to
S Quli | sos1 - sa)pi" ().

Therefore, we can associate with each finite sequence sq .. .s, starting at the
root s = sg of {2, the probability H?:_()l Pr,(sit1 | so...s;). These probabilities
for the finite sequences give rise to a unique probability measure y, , on B, that
assoclates with each A € B, its probability u;,(A) [13]. We can then define
minimal and maximal probabilities as follows.

Definition4 (minimal and maximal probability). The minimal and maz-
imal probabilities uy (A), pF(A) of a set of sequences A € By are defined by

#s (4) = inf sy (4) i (A) = sup p, p(A) O
n

Thus, p; (A) and pf(A) represent the probability with which the system
follows an evolution ss;ss... € A when the nondeterministic choices are as
unfavorable or as favorable as possible, respectively. In general, u+ and u~ are
not additive on B;, as the following lemma states.

Lemmab5. If Ay, Ay € B,, with Ay N Ay =0, then

pe (A1 U Ag) > p7 (Ar) +p7 (A2) pf (AU Ag) < pf (A1) + pf (As)
and equality does not hold in general.

The minimal and maximal probability are related by the following lemma.
Lemma 6. For A € By, it is p; (A) =1 — pt (2, — A).

Proof. From s n(A) = 1 — ps (82, — A), we have p; (A) = inf, p, ,(4) =
inf,, (1 — s (825 — A)) =1 —sup, ps (02, — A) =1 —puf (2, — A). |

3 Probabilistic Temporal Logic

Syntax. The logics pCTL and pCTL* are derived from the branching-time
logics CTL and CTL* [6] by introducing a probabilistic operator IP, with the
intuitive reading that IP5 4 ¢ (resp. IP<,¢) means that the probability of ¢ holding
in the future evolution of the system is at least (resp. at most) a [10, 11, 9, 2].
Formally, we distinguish two classes of formulas: the class Stat of state formulas
(whose truth-value is evaluated on the states), and the class Seq of sequence
formulas (whose truth-value is evaluated on infinite sequences of states). For
pCTL*, the classes Stat and Seq are defined as follows:

P C Stat (1)

6, 1 € Stat => ¢ A, ¢ € Stat 2)
b€ Seq = Ad, B, Poond € Stat (3)

6 € Stal = & € Seq (4)

&, Y €Seq = OdAY, =¢, O¢, OGb, UY € Seq . (5)

In the above definition, > stands for one of <, <, >, >, and a € [0, 1]. The logic
pCTL is a restricted version of pCTL*, and its definition can be obtained by

=

replacing the clauses (4), (5) in the above definition with the single clause

¢, Y € Stat = 0O, &P, dU Y € Seq . (6)

Semantics. For a formula ¢ € Stat, we indicate with s |= ¢ its satisfaction
on state s € S, and for ¢ € Seq we indicate with w |= ¢ its satisfaction on the
infinite state sequence w. The semantics of the logical connectives and of the
temporal operators is defined in the usual way; the semantics of A, E and IP are
defined as follows:

sEAY ff VwER, wk ¢ (7)
sEEg iff wef, wE¢ (8)
s EP>a0 off py({we i |wle})>a (9)
sEP<d iff pf{we s |wEd}) <a. (10)

The semantics of s |E Ps4¢, s = IP.,¢ are defined in a similar way. This
definition has a very intuitive reading: if s |= IP>,¢, it means that regardless
of the choices made in nondeterministic states, the probability that the future
evolution satisfies ¢ is at least a (and similarly for s |= P<,9).

To see that the semantics is well-defined, it is possible to show by induction
on the structure of ¢ that {w € 2, |w |E ¢} € B, for every ¢ € Seq [22]. We say
that a formula ¢ € Stat is satisfied by a PNS IT, written IT | ¢, if s, |= ¢.

4 Model Checking

We now present algorithms to decide whether a PNS IT with finite state space S
satisfies a specification ¢ written in pCTL or pCTL*. We will prove that these
algorithms have polynomial time complexity in the size of the description of I7.
We first give the algorithm for pCTL, and then we examine the one for pCTL*.

The algorithms share the same basic structure of those proposed in [8, 7] for
CTL and CTL*. Given a formula ¢ € Stat, they recursively evaluate the truth-
values of the state subformulas ¢ € Stat of ¢ at all states s € S, starting from
the propositional formulas of ¢ and following the recursive definitions (1)-(3) of
state formulas, until the truth-value of ¢ itself can be computed at all s € S.

In fact, since pCTL and pCTL* differ from CTL and CTL* only for the
presence of the IP operator, we can use the same techniques proposed for CTL
and CTL* to deal with the operators A, =, A, E. In the algorithms below,
therefore, we need to examine only the case corresponding to IP.

4.1 pCTL Formulas

Let Prf ¢ = pf({w € 2, |w | ¢}), Pry ¢ = iy ({w € 2, | w [6}). From

(9), (10) we see that in order to check whether s |= IPuqq ¢ it suffices to compute
Prj ¢, Pry ¢. Using Oy < =0, Oy < trueld ¢, and the relations

Prt-¢=1-Pr;¢ Pr;-¢=1-Prfo,

derived from Lemma 6, we need only to consider the case of ¢ = v U . Let Sq =
{s € S| s =9} be the set of “destination” states, and let S, = {s € S | s E v}
be the set of “intermediate” states.

Computation of Pr_ ¢. It is useful to determine, first of all, for which states
s € Sis Pr; ¢ > 0. To this end, let the monotone set function A : 25 + 2% be
such that, for A C S,

AA)=AU{se S, |Vie{l,... k}.3t. (te Anpi(t)>0)}.

As S is finite, the fixpoint A% (A) = |Ji2, A?(A) is computable in at most |S|
iterations. Let Ssq = A% (S4). The following lemma states that this is exactly
the set of states from which ¢ can be true with probability greater than 0.

Lemma 7. s € S— S5 impliesPr; ¢ =0, s € Ssq impliesPr; ¢ >0, s€ Sy
implies Pry ¢ = 1.

We still have to determine the value of Pr; ¢ for the states in 51’9 def Ss0—354.
Each s € 51’9 will choose the next-state distribution pj : 1 < ¢ < k, that minimizes
the probability of getting to S4. Thus, for all s € Szl? we have:

1<i<ks
- t teSa

Pri¢= min | Y pi(t)Pryo+ Y pi(t)] - (11)
|

We can find a solution for the above set of equations by solving a linear pro-
gramming problem, as the following lemma states.

Lemma8. To determine Pr ¢ for all s € S;,, it suffices to find the set of values
{zs: s € S} that mazrimizes) g/ x5 subject to the set of constraints
p

2o < Y itz + Y pi(t)

tES}’, teSa

foralls € S, and 1 <i < ks. Then, it is simply Pr_ ¢ = z;, for all s € S,,. These
values are well-defined, as the above problem admits a unique optimal solution.

To solve the above linear programming problem, it is possible to use well-
known algorithms, such as the simplex method. To state the results about the
complexity of pCTL model checking, assume that IT is described by listing all
the next-state distributions for all states as vectors of rational numbers, each
represented as the ratio of two integers. The size of IT, denoted by |II|, will be
simply the length of this description, considered as a string. Using algorithms
based on the ellipsoid method, the above linear programming problem can be
solved in polynomial time in |IT| [21]. Therefore, we have the following theorem.

Theorem 9. If the truth-values of v, ¢ are known at all s € S, the truth-value
of P<a(yU) at all s € S can be computed in polynomial time in |IT|.

Computation of Pr] ¢. In the case of Pr] ¢, the set Ssg = {s € S| Prf ¢ >
0} is simply the set of states of the directed graph (Sg U Sp,p) from which it
is possible to reach Sy following a path belonging to the graph itself. Again,
Pri ¢ =0fors € S — Sso, and Pr} ¢ = 1 for S € Sy. Letting S, < Suq — Sy,
for all s € S}, we can write, in analogy to (11),

1<i<k;
- teSq

Prio = max [S pPrre+ Y g (t)] |
tesy

Again, we can compute Prf¢ for all s € 51/7 by solving a linear programming
problem, and the analogous of Theorem 9 holds for IP3 ,¢.

Complexity of pCTL model checking. Combining the results about the
complexity of CTL model checking [4] with Theorem 9, we get the following
theorem about the complexity of pCTL model checking on PNS.

Theorem 10. Model checking of pCTL formulas over a PNS II can be done in
time polynomial in |II| and linear in the size of the formula.

4.2 pCTL* Formulas

We now turn to the problem of computing Pr; ¢ and Pr} ¢ for a general pCTL*
path formula ¢ € Seq. As Pr; ¢ =1— Prj’ —¢ by Lemma 6, we need to consider
only the case of Prf ¢. As usual, we assume that the truth-values of all state
subformulas of ¢ have already been evaluated at all states of the system.

The algorithm we propose consists of three steps. First, we put the formula
¢ in a canonical form ¢”. Second, we construct from IT a new system II’, such
that the states of I’ keep track of the truth-values of the subformulas of ¢,
and the probability of sets of sequences in IT is equal to the probability of the
corresponding sets of sequences in IT’. Third, we show that computing Pr} ¢ in
IT corresponds to computing the probability of reaching certain sets of states of
II’, and this can be done using the method previously outlined for pCTL.3

Canonical form for ¢. Let I' = {v,...,9,} be the set of mazimal state
subformulas of ¢, that is, the set of state subformulas of ¢ that are not proper
subformulas of any other state subformula of ¢. For each 7;, we introduce a
new propositional variable r;, and let ¢’ = ¢[r1/71] - -[rn/7n] be the result of
replacing each occurrence of v; in ¢ with r;, for all 1 <7 < n. As for each state
s € S we have already computed whether s |= «;, we can extend the labeling V
by letting V(s) = V(s) U {r; | s =y, 1 <i<n}.

The resulting formula ¢’ is a linear-time temporal formula constructed with
the propositional connectives and the temporal operators O, &, 4 on the propo-
sitional variables rq, ..., r, [17]. By the results of [16, 3], =@’ can be put into the
canonical form /\i.zl(D Oxi VoOA;) for some past temporal formulas x1, ..., X1,
A1, ..., A; built with propositional connectives and the past temporal operators
S (since) and © (previous) [15, 17]. Thus, ¢’ can be put into the form

l

o \/ SO0 A Sy)

i=1

where again dy, ..., &, ¥1, ..., ¥ are past temporal formulas. Moreover, the
size of ¢’ is at most doubly exponential in the size of ¢.

Construction of IT’. The truth-value of a past formula at point s; of a se-
quence $g, §1, S2, ... depends only on the finite “past” sequence sg, s1,..., k.
Therefore, it is possible to construct from IT = (S, sin, V,7) a system IT' =
(87, s, V', ') whose states keep track of the truth-values of the past formulas
in ¢ as II follows a sequence of states.

To do so, let 1, ..., 6, be the set of past subformulas of ¢” having § or
© as the main connective, ordered in such a way that no 6; is a subformula of
6; for i > j. The space state of II' is S = S x {true, false}™, so that a state

s’ ={s,u1,...,um) € S’ consists of a state s of IT and of a sequence uy, ..., up

% An alternative approach, not pursued in this paper, would have been to construct
IT’ from IT and from a deterministic Street automaton for —¢.

of truth-values of 61, ..., 6. Any state in S’ can be taken as the initial state s/,
of IT". We define the projection function 7 : S’ +— S by 7({s,u1,...,um)) = s.
Let g1, ..., ¢m be new propositional variables, that will be used to replace the
formulas 61, ..., 6,,. The labeling function V' is defined by

V'((s,u1,...,um)) = f/(s) U{gi| u; = true, 1 <i<m}.

For 1 < ¢ < m, define 0, = (...(Qi[qi_l/ﬁi_l]) . ..[ql/ﬁl]) to be the formulas
resulting from successively substituting in 6; ¢;—_1, ..., ¢q1 for 8,1, ..., 6. For
1 <k <, define

S = (o (Oklgm/0m) - [0 /61]) O = (o (Crlgm/Om]) - -[91/61))

to be the propositional formulas resulting from successively substituting ¢, .. .,
q1 for 0,,, ..., 61 in O, Y. Note that 0; does not contain any ¢; for 1 <:<j <
m. Define also (Z) to be the formula obtained by orderly replacing each §;, 1; in
¢" with &;, ¢, 1 < i <, respectively.

The definition of the reachability relation p’ in II’ encodes the semantics
of the past operators. Recall that a formula a § # holds at a given state of a
sequence if § holds at that state, or if @ holds at that state and a § # holds at
the previous one; a formula ©a holds at a given state if a holds at the previous
one. Consider any two states s’ = (s, u1,...,um), ' = {t,v1,...,vy) of II'. As
u;, v; represent the truth-values of 0; at s', ' respectively, we let ¢’ be reachable
from s, written p'(s',t'), if p(s,t) and, for all 1 < i < m:

1. if 6; has the form ©a, v; = true iff s' E a;
2. if ; has the form a 8 8, v; = true iff [t' = f or (u; = true and t' = a)].

The next-state probability distributions for I’ are then defined, for s’ € S,
ks = kr(sny, and for 1 <@ < kg, by:

) w(s') / PRIV
p;(t/):{pi (x(t) if p'(s" . 1');

0 otherwise.

The fact that the above equation defines next-state probability distributions is
a consequence of the following lemma.

Lemmall. Given s € S and s’ € S’ such that s = w(s'), for every t € S such
that p(s,t) there is exactly one t' € S’ such that t = n(t') and p'(s',1).

Proof. Let t' = (r,v1,...,vn) be a state in S’ such that ¢ = n(t') and p/ (s,).
The value of 7 is uniquely determined by » = ¢. For 1 < i < m, the truth value
of v; is determined by s, ¢t and by the truth values of vy, ..., v;_1. Hence, t' is
uniquely determined. a

Relationship between IT and IT’. A formula ©a« is always false on the first
state of a sequence. A formula a & 8 holds on the first state of a sequence if that
state satisfies 3. Thus, in order for uy, ..., u,, to represent the truth-value of
él, e ém, a sequence in IT that starts at the state s € S should start in 1T’ at a
state £(s) = (s, u1,. .., um) such that, for all 1 <i < m, u; is true iff 0; has the
form a S B and £(s) = B. As the above requirement uniquely determines &(s),
it defines a one-to-one function ¢ : S — S’.

Moreover, for all s € S, there is a bijective correspondence between the legal
sequences of IT that start at s € S and those of IT’ that start at &(s). This
correspondence relates each legal sequence w : sg, s1, 82, ... of IT with the unique
legal sequence ((w) : s, 8,85, ... of IT' such that ¢(sg) = sf, and 7(s}) = s;
for all ¢ > 0. If A € {2 is a set of sequences of IT, denote with ((A) the set of
(-related sequences in IT’. The following lemma follows from the construction of

II' and ¢.
Lemmal2. w E ¢ iff ((w) E é, so that
(o e |wkoh) = e, o =d}.

Proof. Given two corresponding sequences w : Sg, §1, Sz, ..., ((w) : to,t1,t2,. ..
with labelings V, V’ respectively, ¢ holds at sq iff ¢” holds at sq. By induction
on 7 it can be proved that #; holds at sg iff él holds at t; iff u; = true at t;, for
1<i<m, k>0.Hence ¢ holds at sq iff ¢ holds at to, and this concludes the
proof. a

Furthermore, there is a correspondence between the strategies of IT and IT’.
To n for IT corresponds 7’ for I1’ such that

Qui(i |55 50) = Quli | (s0) .. 7(s0)) (12)

for all n > 0, all sequences sj ... s} of states of II’, and 1 < i < k,s. Related sets
of sequences starting from related states of IT, IT’ have thus the same probability,
as the following lemma states.

Lemmal3. If A € B; is a measurable set and 1, ' are related as in (12),
s (D) = pe(s) n (C(4)). Therefore, by definition of marimal measure,

i (A) = it (C(2))

Proof. The result follows easily from the definition of next step probabilities in
II’ and from the fact that & is one-to-one and (is bijective. a

Computing in IT’. From the above relations, in order to compute Pr¥ ¢ in IT
it suffices to compute Prg'(s) ¢ in IT’; and to compute this we can take advantage
of the special form of ¢ : \/i-:1 <a(d; A). A

For 1 < i <, define C; = {s € S’ | s |= di}, set B; := C;, and iterate the
following three-step procedure until no more states can be removed from B;.

1. Define, for each s € B;, the set of indices
My ={je{l k) | {tes |t >0} C B}

of next-state distributions that do not lead any computation outside B;.
2. Consider the directed graph G = (B;, E), where

E= {(s,t) |35 € M, .p;(t) > 0})

3. Remove from B; all states s that cannot reach a state in {s € B; | s E 124}
by a path in G of length at least 1.

Note that the above procedure is iterated N; < |S’] times.

For 1 <1 <, let F; be the subsets of B; obtained, and let F' = Ui’:1 F;. For
AC S, se S, define I';(A) = {w € 2 | Ik .w|i € A} to be the set of sequences
that reach A from s. The following theorem allows us to compute Prj’ ¢.

Theorem14. Fors € S, Prf¢ = ,ug'(s) (Fg(s)(F))‘

The quantity ,ug(s) (I¢(s)(F)) can then be computed with the algorithm given

in the previous section for pCTL, taking F as Sq and S as S,. The proof of the
theorem uses the two following lemmas.

Lemma15. Forall s € S, there is a strategy n such that a sequence w € I's(F)
satisfies ¢ with probability 1, 1.e.

uH(N(F)) =t (fw e T(F) |w = 6}) -

Moreover, this strategy does not need to depend on the portion of w € I's(F)
outside F'.

Proof. Assume that g € F is the first state at which w € I';(F) enters F. Let
i:min{m|lgmgl/\tOEFm}.FortEFi,let

Mo={iell, .. .k}|{t'es |p(t) >0} CF}

be the set of indices of next-state distributions that do not leave F;. The strategy
n, at t € F;, will choose one of the j € M; with equal probabilities. Note that
while the strategy depends on the state ¢y of first entry in F', it does not depend
on the portion of w outside F'. After the entry in F', the sequence is confined to
F;; from each t € F; there is a path to a state of F; where 1[)1 holds; and F; has
finite size. Therefore, the sequence w will satisfy <>(D(§i A D<>1/;i), and qg, with
probability 1. O

Lemmal6. For 1 < i<, se 5, and for any strategy 7, the measure of the
set of sequences from s that satisfy &(0O8; A OOY;) without ever entering F; is
0, i.e.

pisn({w € 2 |w = (08 ADOYs)} — T (Fy) = 0.

Proof. For 1 < j < N;, let D; be the set of states that have been removed from
B; at the j-th iteratior} of the procedure; let also Dy = S’ —C; be the set of states
that does not satisfy d;. Let Do; = i;é D;, Dy; = Ui\f;j_l_l D;. Moreover, call

a 1;-state any state ¢ € S’ such that ¢ = ;. Define also
b =inf{p;,(t) | s,t €S AL <m< ks Ap,(t) >0}

and note that b > 0, as S’ has finite size. We will prove the following assertion
by complete induction on j, from N; down to 1:

For 1 < j < N;, a sequence passing from s € D;, never entering F; and
satisfying OOY; will contain a state in Do with probability 1.

Clearly, this assertion implies the result stated by the lemma.

Consider the case of 7, 1 < j < N;, and assume that the assertion has been
proved for all j/, j < 7/ < N;.

Let a; be the fraction of sequences passing through s € D; and reaching a
i;-state without leaving D; U Dy ;. Since s has been removed from B;, each of
these sequences, before reaching the 1;-state, must pass through a eritical point,
i.e. a point where the strategy 1 has chosen a next-state probability distribution
p such that {t € S" | p(t) > 0} € D; U Dy ;. Therefore, a1 < 1 — b, as at most
1 — b sequences that pass through a critical point remain in D; U Dy, ;.

The 1/A)Z-—state reached by the a; sequences belongs to either D; or D ;. If
it belongs to D;, we say that the first cycle is concluded. Otherwise, by the
induction hypothesis we know that the sequences that pass through D, ; and
satisfy OO, without entering F; eventually go to a state in D; U D.; with
probability 1. For these sequences, the first cycle is concluded when they reach
D; U Dg;. In either case, at most a; sequences complete the first cycle without
leaving D; or Dy ;.

A fraction ay of the sequences that complete the first cycle without leaving
D;UDs, ; will reach another i;-state without leaving D;UDs ;. As they must pass
again through a critical point, ay < 1—b. In general, the fraction of sequences that
goes through k cycles without leaving D; U Dy ; is at most Hiq:l am < (1—0)*.
Therefore, the set of sequences passing through s € D; that satisfy D<>1/A)Z' without
leaving D; U Dy ; has measure 0. ad

Corollary 17. For any s € S’ and n, pi; ,({w € 2, |w E b} — I (F)) =0.
Proof. From Lemma 16 we have
F‘sm<{w € Q; |w = d;} - Fs(F))

l
< o (fw € 2w (08 A DO} = Iy () = 0. 0
i=1

Proof of Theorem 1. For s’ e S, by the definition of maximal probability we
have Prf¢ = SUp, s’ g ({w € 2, |w = ¢}). By Corollary 17 we have, for any
strategy n,

Hs'n ({W € Q;’ |w k= (Z;})
= psrn({w € To(F) |w £ 6}) + por g ({w € 20 |w = ¢} — T (F))
= oy ({w € T (F) |w [6}) -

Hence, by Lemma 15, Pr+qA5 = sup, fis' n({werly(F)lwE ¢} } =
From Lemmas 12 and 13 we finally have Prf¢ = Pr q; = ,ugs (F()(F)), as
was to be proved. O

Complexity of pCTL* model checking. By combining results about the
complexity of CTL* model checking [7], pCTL model checking, and an analysis of
the above algorithm, we get the following result, that summarizes the complexity
of pCTL* model checking for PNS.

Theorem 18. Model checking of pCTL* formulas over a PNS IT can be done
in polynomial time in |II|.

On the other hand, from the results of [5] we know that determining whether
a linear-time temporal formula is satisfied with probability 1 by a PNS requires
at least doubly exponential time in the size of the formula. As this problem can
be reduced to pCTL* model checking, we have the following result.

Theorem 19. Model checking of pCTL* formulas over PNS has a time com-
plexity that s at least doubly exponential in the size of the formula.

In the algorithm we presented, we can trace the source of this complexity to
the step that computes the canonical form of a temporal formula, and to the
construction of IT’. In fact, |II'| is triply-exponential in |¢|, in the worst case.

Strategies for pCTL and pCTL¥*. We say that a strategy 5 is deterministic
if Q,(i]s0...s,) 1s either 0 or 1 for all 1 < ¢ < k,,, n > 0 and all sequences
Sg . ..sp of states of S. We say that a strategy is Markovian if

Qn(i]sg...sn) =Qn(t] sn)

for all n > 0 and all sequences sg .. .s, of states of S.

Given asystem I, and ¢ € Seq, s € S, say that a strategy 1 is most favorable
(resp. most unfavorable) if 15 ,({w € 25 | w | ¢}) = Prit¢ (vesp. if ps ,({w €
25 |w |E ¢}) = Pr; ¢). The following corollary, derived from an analysis of the
model-checking algorithms, gives us a characterization of the most favorable and
unfavorable strategies corresponding to pCTL and pCTL* formulas.

Corollary 20. The following results hold.

1. For all PNS II and all pCTL formulas ¢ € Seq, there are Markovian and
deterministic strategies that are most favorable and most unfavorable for all
sEeS.

2. For all PNS II, all pCTL* formulas ¢ € Seq and all s € S, there are most
favorable and most unfavorable strategies that are deterministic. However,
there are PNS I, s € S, and pCTL* formulas ¢ € Seq such that there are
no most favorable nor most unfavorable strategies that are Markovian.

The second part of this corollary shows that nondeterminism cannot be en-
coded by leaving some transition probabilities of a Markov chain unspecified, if
pCTL* is used as the specification language.

5 Conclusions

Tt is known from [10, 2] that pCTL and pCTL* model checking on Markov chains
can be done in polynomial time in the size of the system. It is interesting to note
that adding nondeterminism still preserves the polynomial time bound, provided
the size of the system takes into account not only the number of states, but also
the encoding of the transition probabilities.

The situation is different for the time bounds expressed in terms of the size
of the formula. Model checking of pCTL formulas can be done in linear time on
the size of the formula both for Markov chains [10] and PNS. However, while
pCTL* model checking on Markov chains can be done in single exponential time
in the size of the formula [5, 2], pCTL* model checking on PNS requires at
least doubly exponential time in the size of the formula. In our algorithm, the
complexity of putting formulas in canonical form is partially mitigated by the
fact that many common formulas used in system specification can be efficiently
put into canonical form.

Acknowledgements. We would like to thank Anca Browne, Anil Kamath,
Zohar Manna, Serge Plotkin and Amir Pnueli for helpful comments and sugges-
tions.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Verifying automata specifications of prob-
abilistic real-time systems. In Real Time: Theory in Practice, Lecture Notes in
Computer Science 600, pages 28—-44. Springer-Verlag, 1992.

2. A. Aziz, V. Singhal, F. Balarin, R.K. Brayton, and A.L. Sangiovanni-Vincentelli.
It usually works: The temporal logic of stochastic systems. In Computer Aided
Verification, 7th International Workshop, volume 939 of Lect. Notes in Comp. Sci.
Springer-Verlag, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

E. Chang, Z. Manna, and A. Pnueli. The safety-progress classification. In Logic,
Algebra, and Computation, NATO ASI Series, Subseries F: Computer and System
Sciences. Springer-Verlag, Berlin, 1992.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite state
concurrent systems using temporal logic. In Proc. 10th ACM Symp. Princ. of Prog.
Lang., 1983.

. C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state

probabilistic programs. In Proc. 29th IFEFE Symp. Found. of Comp. Sci., 1988.
E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume E, chapter 16, pages 995-1072. Elsevier
Science Publishers (North-Holland), Amsterdam, 1990.

E.A. Emerson and C.L. Lei. Modalities for model checking: Branching time strikes
back. In Proc. 12th ACM Symp. Princ. of Prog. Lang., pages 84-96, 1985.

E.A. Emerson and A.P. Sistla. Deciding branching time logic. In Proc. 16th ACM
Symp. Theory of Comp., pages 14-24, 1984.

H. Hansson. Time and Probabilities in Formal Design of Distributed Systems.
Real-Time Safety Critical Systems. Elsevier, 1994.

H. Hansson and B. Jonsson. A framework for reasoning about time and reliability.
In Proc. of Real Time Systems Symposium, pages 102-111. IEEE, 1989.

H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6(5):512-535, 1994.

S. Hart and M. Sharir. Probabilistic temporal logic for finite and bounded models.
In Proc. 16th ACM Symp. Theory of Comp., pages 1-13, 1984.

J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov Chains. D. Van
Nostrand Company, 1966.

D. Lehman and S. Shelah. Reasoning with time and chance. Information and
Control, 53(3):165-198, 1982.

O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proc. Conf. Log-
ics of Programs, volume 193 of Lect. Notes in Comp. Sci., pages 196-218. Springer-
Verlag, 1985.

O. Maler and A. Pnueli. Tight bounds on the complexity of cascaded decomposi-
tion of automata. In Proc. 31th IEEFE Symp. Found. of Comp. Sci., pages 672682,
1990.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proc.
15th ACM Symp. Theory of Comp., pages 278-290, 1983.

A. Pnueli and L. Zuck. Probabilistic verification by tableaux. In Proc. First IEFEE
Symp. Logic in Comp. Sci., pages 322-331, 1986.

A. Pnueli and L.D. Zuck. Probabilistic verification. Information and Computation,
103:1-29, 1993.

A. Schrijver. Theory of Linear and Integer Programming. J. Wiley & Sons, 1987.
M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems.
In Proc. 26th IEEFE Symp. Found. of Comp. Sci., pages 327-338, 1985.

